Traces of the Group Law on the Kummer Surface of a Curve of Genus 2 in Characteristic 2

نویسنده

  • Sylvain Duquesne
چکیده

In the early 1990s, Flynn gave an explicit description of the Jacobian of a genus 2 hyperelliptic curve to perform efficient arithmetic on these objects. In this paper, we give a generalization of Flynn’s work when the ground field has characteristic 2. More precisely, we give an explicit description of both the Jacobian and the Kummer surface. We also give (and explain how we found) explicit formulas for the structure of the group law on the Jacobian preserved on the Kummer surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Fibrations on a Generic Jacobian Kummer Surface

We describe all the elliptic fibrations with section on the Kummer surface X of the Jacobian of a very general curve C of genus 2 over an algebraically closed field of characteristic 0, modulo the automorphism group of X and the symmetric group on the Weierstrass points of C. In particular, we compute elliptic parameters and Weierstrass equations for the 25 different fibrations and analyze the ...

متن کامل

The Frobenius map , rank 2 vector bundles and Kummer ’ s quartic surface in characteristic 2 and 3 Yves Laszlo and Christian Pauly

Our interest in the diagram (1.1) comes from questions related to the action of the Frobenius map on vector bundles like e.g. surjectivity of V , density of Frobenius-stable bundles, loci of Frobenius-destabilized bundles (see [LP]). These questions are largely open when the rank of the bundles, the genus of the curve or the characteristic of the field are arbitrary. In [LP] we made use of the ...

متن کامل

Two-coverings of Jacobians of Curves of Genus Two

Given a curve C of genus 2 defined over a field k of characteristic different from 2, with Jacobian variety J , we show that the two-coverings corresponding to elements of a large subgroup of H ` Gal(k/k), J [2](k) ́ (containing the Selmer group when k is a global field) can be embedded as intersection of 72 quadrics in P k , just as the Jacobian J itself. Moreover, we actually give explicit equ...

متن کامل

Fast genus 2 arithmetic based on Theta functions

In 1986, D. V. Chudnovsky and G. V. Chudnovsky proposed to use formulae coming from Theta functions for the arithmetic in Jacobians of genus 2 curves. We follow this idea and derive fast formulae for the scalar multiplication in the Kummer surface associated to a genus 2 curve, using a Montgomery ladder. Our formulae can be used to design very efficient genus 2 cryptosystems that should be fast...

متن کامل

Canonical Heights on the Jacobians of Curves of Genus 2 and the Infinite Descent

We give an algorithm to compute the canonical height on a Jacobian of a curve of genus 2. The computations involve only working with the Kummer surface and so lengthy computations with divisors in the Jacobian are avoided. We use this height algorithm to give an algorithm to perform the “infinite descent” stage of computing the Mordell-Weil group. This last stage is performed by a lattice enlar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics in Computer Science

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010